UCM: Personalized Document-Level Sentiment Analysis Based on User Correlation Mining
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 14089 LNAI, Page: 456-471
2023
- 2Citations
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Personalized document-level sentiment analysis (PDSA) is important in various fields. Although various deep learning models for PDSA have been proposed, they failed to consider the correlations of rating behaviors between different users. It can be observed that in the real-world users may give different rating scores for the same product, but their rating behaviors tend to be correlated over a range of products. However, mining user correlation is very challenging due to real-world data sparsity, and a model is lacking to utilize user correlation for PDSA so far. To address these issues, we propose an architecture named User Correlation Mining (UCM). Specifically, UCM contains two components, namely Similar User Cluster Module (SUCM) and Triple Attributes BERT Model (TABM). SUCM is responsible for user clustering. It consists of two modules, namely Latent Factor Model based on Neural Network (LFM-NN) and Spectral Clustering based on Pearson Correlation Coefficient (SC-PCC). LFM-NN predicts the missing values of the sparse user-product rating matrix. SC-PCC clusters users with high correlations to get the user cluster IDs. TABM is designed to classify the users’ sentiment based on user cluster IDs, user IDs, product IDs, and user reviews. To evaluate the performance of UCM, extensive experiments are conducted on the three real-world datasets, i.e., IMDB, Yelp13, and Yelp14. The experiment results show that our proposed architecture UCM outperforms other baselines.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85174715784&origin=inward; http://dx.doi.org/10.1007/978-981-99-4752-2_38; https://link.springer.com/10.1007/978-981-99-4752-2_38; https://dx.doi.org/10.1007/978-981-99-4752-2_38; https://link.springer.com/chapter/10.1007/978-981-99-4752-2_38
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know