Heat Transfer Analysis of Peltier-Based Thermocycler for a Microfluidic-PCR Chip
Lecture Notes in Mechanical Engineering, ISSN: 2195-4364, Page: 527-542
2024
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures3
- Readers3
Conference Paper Description
Polymeric chain reaction (PCR) is one of the commonly used technologies for the exponential amplification of a pathogen's DNA or RNA for quick detection. A common PCR procedure includes three major steps: denaturation (90–97 °C), annealing (50–60 °C), and extension (68–72 °C). This process is often repeated in 25–30 cycles, and it may take up to 5–6 h for successful amplification of the target DNA. The implementation of PCR in a microfluidic platform would reduce the reaction time drastically as it may consume only a few microliters of samples and reagents. Also, it increases the sensitivity and capability of point-of-care applications. A thermal analysis of a microfluidic device fabricated using thermoplastic (PMMA) is presented in this paper. The heating and cooling of the sample are done using two thermoelectric modules. The numerical analyses of the system are carried out for comparing the performance of thermoplastic materials during the thermal ramping process.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85187805250&origin=inward; http://dx.doi.org/10.1007/978-981-99-7177-0_43; https://link.springer.com/10.1007/978-981-99-7177-0_43; https://dx.doi.org/10.1007/978-981-99-7177-0_43; https://link.springer.com/chapter/10.1007/978-981-99-7177-0_43
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know