CBDN: A Chinese Short-Text Classification Model Based on Chinese BERT and Fused Deep Neural Networks
Communications in Computer and Information Science, ISSN: 1865-0937, Vol: 1961 CCIS, Page: 161-173
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
To address the common issues in Chinese short-text classification caused by the lack of contextual information, ambiguity, and sparsity of semantic features due to the short length of the text, a feature fusion-based Chinese short-text classification model CBDN is proposed. Firstly, the Chinese-BERT-wwm pre-trained model, improved by the full-word masking technique, is selected as the embedding layer to output the vector representation of the short text. Secondly, to fully extract the limited semantic features of the short text, the model employs a multi-head self-attention module and a long connected bidirectional LSTM (LC-BiLSTM) network to further learn the semantic features, and then fuses the hidden layer output vector with the feature vector further processed by these two methods. Finally, to improve the classification performance, the fused features are input into an improved “pyramid CNN” (PCNN) layer, and the short-text classification result is obtained through the classifier. The CBDN model is experimentally compared with various baseline models on the THUCNews dataset. The experimental results show that the proposed model achieves an accuracy and precision of 94.38% and 94.37%, respectively, outperforming other baseline models, indicating that the model better extracts the semantic information of short text and effectively improves the classification performance of Chinese short text.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85178620212&origin=inward; http://dx.doi.org/10.1007/978-981-99-8126-7_13; https://link.springer.com/10.1007/978-981-99-8126-7_13; https://dx.doi.org/10.1007/978-981-99-8126-7_13; https://link.springer.com/chapter/10.1007/978-981-99-8126-7_13
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know