A Parametric Wave Joint for Robotic Fabrication of Digital Stereotomy
Computational Design and Robotic Fabrication, ISSN: 2731-9059, Vol: Part F2072, Page: 454-465
2024
- 1Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
This paper explores the potential of digital stereotomy in combination with robotic fabrication to increase the precision and complexity of stone processing. To enable the application of these techniques in outdoor environments, modular joints designed for robotic assembly are necessary. Additionally, the cutting process must be efficient and minimize material waste. To address these challenges, this research proposes a parametric wave joint design that enables rapid cutting and straightforward assembly by a robotic system. The joint contains motion space allowing it to slide into accurate assembly position, enabling the robot to complete the assembly without requiring highly precise vision or gripper in outdoor situations. Furthermore, the wave joint design eliminates the need for milling, reducing the processing time. The paper presents a robotic arm-cutting method for this joint and conducts experiments using foam and robotic arm hot-wire cutting to simulate stone cutting. The feasibility of the joint is tested through the assembly of a bent column, and finite element analysis is used to compare the stresses on two joint parts under shear force with different control parameters. The study confirms the feasibility of the wave joint design for robotic assembly and the efficiency of robotic arm cutting. The findings may inform the development of modular assemblies for robotic systems in stone processing applications.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85184285969&origin=inward; http://dx.doi.org/10.1007/978-981-99-8405-3_38; https://link.springer.com/10.1007/978-981-99-8405-3_38; https://dx.doi.org/10.1007/978-981-99-8405-3_38; https://link.springer.com/chapter/10.1007/978-981-99-8405-3_38
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know