Scheming of Four-Phase IBC for Fast Charging of EV Battery
Lecture Notes in Electrical Engineering, ISSN: 1876-1119, Vol: 1139, Page: 65-76
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
In today’s world, the Automobile industry is shifting rapidly from conventional ICE Vehicles to EVs. As the name suggests, EVs use electric motors instead of gasoline engines. Increase in demand of EV leads to increase in demand of power electronic converters to make electrical circuitry more and more efficient. Efficiency during battery charging can be enhanced by shrinking the losses and ripples in the output voltage of converters. The interleaving concept comes into the picture to reduce the losses along with ripples in output voltage, the reduction in the size of components, and faster response. This paper focuses on working of a four-phase interleaved boost converter for the rapid charging of EV batteries. The simulation of the proposed circuit is executed in MATLAB/SIMULINK and the results are validated. The result compares a conventional boost converter with an interleaved boost converter. The simulation outcomes highlight how the interleaved boost converter (IBC) boosts the input voltage.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85189496205&origin=inward; http://dx.doi.org/10.1007/978-981-99-9439-7_6; https://link.springer.com/10.1007/978-981-99-9439-7_6; https://dx.doi.org/10.1007/978-981-99-9439-7_6; https://link.springer.com/chapter/10.1007/978-981-99-9439-7_6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know