High speed crack propagation in bi-phase materials: an experimental study
International Journal of Fracture, ISSN: 0376-9429, Vol: 50, Issue: 1, Page: 67-77
1991
- 5Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We have studied experimentally the high speed propagation of a crack perpendicular to an interface between materials with different mechanical properties. The tests presented in this paper were restricted to the case of a two-dimensional model, without debonding of the interfacial region. Cracks started at a notch machined in the first low modulus phase of the bi-phase single edge notch samples. Our investigations were focussed on the relation between the crack velocity in each phase and the mechanical state of the specimen. The results demonstrate a direct dependence of the crack velocity on the elastic energy stored in the specimen at the moment of crack initiation. For a given experimental situation, we show that the velocity of the crack in each phase and the occurrence of crack arrest can be predicted knowing the relative positions of the two curves crack speed vs. elastic energy for the two constituents of the "bimaterial". For example, this permits the determination of the critical level of stored elastic energy which is necessary to obtain an acceleration of the crack at the interface, without arrest. © 1991 Kluwer Academic Publishers.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0026190296&origin=inward; http://dx.doi.org/10.1007/bf00035169; https://link.springer.com/10.1007/BF00035169; https://link.springer.com/content/pdf/10.1007/BF00035169.pdf; https://link.springer.com/article/10.1007/BF00035169/fulltext.html; https://dx.doi.org/10.1007/bf00035169; https://link.springer.com/article/10.1007/BF00035169
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know