The microtubular system of crayfish retinula cells and its changes in relation to screening-pigment migration
Cell and Tissue Research, ISSN: 0302-766X, Vol: 232, Issue: 2, Page: 335-348
1983
- 8Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The organization of the microtubular system in crayfish retinula cells and its changes in relation to the light-dependent migrations of the screening pigment were studied by electron microscopy. A massive column of microtubules extends longitudinally throughout each retinula cell and its axon. The column is formed by overlapping fascicles of microtubules that originate from the vicinity of the rhabdomeres at multiple levels along the rhabdom. The pigment granules and other organelles are in general aligned with these fascicles and peripheral to the microtubular column. Close associations between microtubules and pigment granules are frequent. The total number of microtubules decreases nucleofugally from an average of about 500 at the middle of the rhabdom, to 390 at the proximal end of the rhabdom, and 240 in the axon below the basement membrane. The longitudinal distribution of microtubules was found similar for cells with the screening pigment in opposite extreme positions. In cells with the pigment in an intermediate position the number of microtubules was found to be nearly doubled in each of the mentioned levels; however, this change was correlated with a parallel increase in the cross-sectional area of the cells during the intermediate state. Thus, the density of microtubules tends to remain fairly constant throughout the light/dark adaptation cycle. These observations suggest that the microtubular system of the crayfish retinula cells constitutes a relatively stationary framework during screening-pigment movements, and could possibly act as a supportive guiding track for pigment transport. © 1983 Springer-Verlag.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0020541471&origin=inward; http://dx.doi.org/10.1007/bf00213791; http://www.ncbi.nlm.nih.gov/pubmed/6883446; http://link.springer.com/10.1007/BF00213791; http://www.springerlink.com/index/pdf/10.1007/BF00213791; https://dx.doi.org/10.1007/bf00213791; https://link.springer.com/article/10.1007/BF00213791; http://www.springerlink.com/index/10.1007/BF00213791
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know