Interspecific differences in the photosynthetic carbon metabolism of marine phytoplankton
Marine Biology, ISSN: 0025-3162, Vol: 114, Issue: 3, Page: 509-515
1992
- 19Citations
- 15Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Six species of marine phytoplankton of different sizes and taxonomic categories were grown in microcosms under identical experimental conditions; the species cultured were: Pavlova lutheri (Prymnesiophyceae), Dunaliella tertiolecta (Chlorophyceae), Phaeodactylum tricornutum (Baciollariophyceae), Eutreptiella sp. (Euglenophyceae), Alexandrium tamarense (Dinophyceae), and Phaeocystis pouchetii (Prymnesiophyceae). The photosynthetic carbon metabolism of these phytoplankton was studied throughout the exponential and lag phases of growth after nutrient depletion. The relative incorporation of carbon into protein was positively correlated with phytoplankton growth, while carbon assimilation into low molecular weight metabolites (LMWM) and storage products, i.e., lipid and polysaccharides, generally increased under nutrient-limiting conditions. Clear taxonspecific differences were observed in the proportions of carbon incorporated into cell constituents. A significant linear relationship was consistently found between the relative synthesis of protein to LMWM, and both the production normalised to chlorophyll (P:B) and the phytoplankton growth rate. However, ANCOVA revealed significant, interspecific differences in these relationships. © 1992 Springer-Verlag.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0001047124&origin=inward; http://dx.doi.org/10.1007/bf00350043; http://link.springer.com/10.1007/BF00350043; http://link.springer.com/content/pdf/10.1007/BF00350043; http://link.springer.com/content/pdf/10.1007/BF00350043.pdf; http://link.springer.com/article/10.1007/BF00350043/fulltext.html; https://dx.doi.org/10.1007/bf00350043; https://link.springer.com/article/10.1007/BF00350043
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know