Densification of ultrafine SiC powders
Journal of Materials Science, ISSN: 0022-2461, Vol: 31, Issue: 14, Page: 3623-3637
1996
- 61Citations
- 15Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Recent results on the densification behaviour of ultrafine SiC powders (below 20 nm) are presented and compared with results on the densification of ultrafine silicon-based ceramic powders given in the literature. A study of different powder processing routes and their influence on the pore-size distribution is given. Pressureless sintered green bodies having pore sizes of about 20 nm show extreme coarsening without significant densification. The results indicate a significant influence of green density on shrinkage. Encapsulated hot isostatic pressing (HIPing) led to a reduction of pore size and to considerable density increase at temperatures below 1600°C. But even then full density without extensive grain growth was difficult to achieve. The applied method to determine grain sizes (X-ray diffraction measurements, XRD, using the Scherrer formula, scanning electron microscopy, SEM, and transmission electron microscopy, TEM) gave similar results for TEM and SEM but lower values for XRD. A possible explanation is presented. Density and grain growth both during pressureless sintering and HIPing showed significant differences between samples with and without sintering additives (B and C). Whether or not the use of sintering agents is favourable in reaching high densities and fine grain sizes, is discussed. HIP densification was modelled assuming diffusion to be the dominant mechanism. Grain growth according to a t dependence and an activation energy of 6.8 eV was introduced into the model. Results on the properties (hardness, also at elevated temperatures, fracture toughness, bending and compression tests, thermal conductivity) of the hot isostatically pressed samples, are presented. © 1996 Chapman & Hall.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0030196487&origin=inward; http://dx.doi.org/10.1007/bf00352770; http://link.springer.com/10.1007/BF00352770; http://www.springerlink.com/index/pdf/10.1007/BF00352770; http://link.springer.com/content/pdf/10.1007/BF00352770; http://link.springer.com/content/pdf/10.1007/BF00352770.pdf; http://link.springer.com/article/10.1007/BF00352770/fulltext.html; http://www.springerlink.com/index/10.1007/BF00352770; https://dx.doi.org/10.1007/bf00352770; https://link.springer.com/article/10.1007/BF00352770
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know