Hyperresistance to DNA damaging agents in yeast
Current Genetics, ISSN: 0172-8083, Vol: 11, Issue: 3, Page: 211-215
1986
- 16Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations16
- Citation Indexes16
- CrossRef16
- 14
- Captures2
- Readers2
Article Description
In order to study resistance to DNA damaging agents, yeast DNA segments conferring hyperresistance in this organism to such genotoxic agents were selected for among yeast cells transformed by a yeast genome library based on the multi-copy vector plasmid YEp13. Genetic variants hyperresistant to 4-nitroquinohne-N-oxide, formaldehyde, and alkylating agents were isolated and the respective hyperresistance determinants shown to co-segregate with the vector plasmid. Phenotypical characterization indicated different degrees of resistance, few cases of cross-resistance and differing structural stability of the cloned DNA. By transfer to E. coli and subsequent retransformation of yeast a number of plasmids was shown to stably carry the genetic information for hyperresistance. © 1986 Springer-Verlag.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0022921823&origin=inward; http://dx.doi.org/10.1007/bf00420609; http://www.ncbi.nlm.nih.gov/pubmed/3129200; http://link.springer.com/10.1007/BF00420609; http://www.springerlink.com/index/10.1007/BF00420609; http://www.springerlink.com/index/pdf/10.1007/BF00420609; https://dx.doi.org/10.1007/bf00420609; https://link.springer.com/article/10.1007/BF00420609
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know