Nutritional improvement of the aspartate family of amino acids in edible crop plants
Amino Acids, ISSN: 0939-4451, Vol: 4, Issue: 1-2, Page: 21-34
1993
- 19Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations19
- Citation Indexes19
- 19
- CrossRef14
- Captures6
- Readers6
Review Description
Plants are the primary source of protein for man and livestock, however, not all plants produce proteins which contain a balance of amino acids for the diet to ensure proper growth of livestock and humans. Alteration of the amino acid composition of plants may be accomplished using techniques of molecular biology and genetic engineering. Genes encoding key enzymes regulating the synthesis of lysine and threonine have been cloned from plants and E. coli and are available for modification and transformation into plants. Genes encoding seed storage proteins have been cloned and modified to encode more lysine residues for developing transgenic plants with higher seed lysine. Genes encoding seed storage proteins naturally higher in methionine have been cloned and expressed in transgenic plants, increasing methionine levels of the seed. These and other approaches hold great promise in their application to increasing the content of essential amino acids in plants. © 1993 Springer-Verlag.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0027502723&origin=inward; http://dx.doi.org/10.1007/bf00805798; http://www.ncbi.nlm.nih.gov/pubmed/24190554; http://link.springer.com/10.1007/BF00805798; http://www.springerlink.com/index/pdf/10.1007/BF00805798; http://www.springerlink.com/index/10.1007/BF00805798; https://dx.doi.org/10.1007/bf00805798; https://link.springer.com/article/10.1007/BF00805798
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know