PlumX Metrics
Embed PlumX Metrics

Diffusive description of lattice gas models

Journal of Statistical Physics, ISSN: 0022-4715, Vol: 71, Issue: 3-4, Page: 653-682
1993
  • 11
    Citations
  • 0
    Usage
  • 3
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    11
    • Citation Indexes
      11
  • Captures
    3

Article Description

We have investigated a lattice gas model consisting of repulsive particles following deterministic dynamics. Two versions of the model are studied. In one case we consider a finite open system in which particles can leave and enter the lattice over the edge. In the other case we use periodic boundary conditions. In both cases the density fluctuations exhibit a 1/f power spectrum. The individual particles behave asymptotically like ordinary random walkers. The collective behavior of these particles shows that due to the deterministic dynamics the particles behave as if they are correlated in time. We have numerically investigated the power spectrum of the density fluctuations, the lifetime distribution, and the spatial correlation function. We discuss the appropriate Langevin-like diffusion equation which can reproduce our numerical findings. Our conclusion is that the deterministic lattice gases are described by a diffusion equation without any bulk noise. The open lattice gas exhibits a crossover behavior as the probability for introducing particles at the edge of the system becomes small. The power spectrum changes from a 1/f to a 1/f spectrum. The diffusive description, proven to be valid for a moderate boundary drive, fails altogether when the drive goes to zero. © 1993 Plenum Publishing Corporation.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know