Structural optimization and d-band holes in Cu monolayers
Zeitschrift für Physik B Condensed Matter, ISSN: 0722-3277, Vol: 83, Issue: 2, Page: 267-271
1991
- 4Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The equilibrium lattice parameter and bandstructure of copper monolayers, both in the square (100) and hexagonal (111) symmetry, have been determined using self-consistent full-potential local density approximation (LDA) calculations. Two quite different procedures have been employed: FILMS, a linear-combination-of-gaussian-type-orbitals method, and a full-potential linearized augmented plane-wave (F-LAPW) method. The copper monolayer is bound with respect to the atomic LSDA ground state in the configuration ds. Nearest-neighbor distances a are determined as 4.25 a.u. in the square geometry and 4.42 a.u. in hexagonal geometry, the latter being favored in energy by 0.33 eV/atom. Both monolayers thus exhibit a nearest-neighbor distance substantially shorter than that found in bulk copper, a=4.8238 a.u. Excellent agreement between the two methods is obtained for the bandstructure, with no indication of a d-band hole at the M point (corner) of the Brillouin zone, in contrast to some other recent self-consistent calculations. Combined use of the von Barth-Hedin LDA and scalar-relativistic corrections produces the smallest gap at the M point, 0.15 eV, at the Hedin-Lundqvist equilibrium geometry. This may be suggestive evidence for the origin of d-band holes when combined with further approximations in the representation of the one-electron orbitals and the charge density. © 1991 Springer-Verlag.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0039619310&origin=inward; http://dx.doi.org/10.1007/bf01309428; http://link.springer.com/10.1007/BF01309428; http://link.springer.com/content/pdf/10.1007/BF01309428; http://link.springer.com/content/pdf/10.1007/BF01309428.pdf; http://link.springer.com/article/10.1007/BF01309428/fulltext.html; http://www.springerlink.com/index/pdf/10.1007/BF01309428; http://www.springerlink.com/index/10.1007/BF01309428; https://dx.doi.org/10.1007/bf01309428; https://link.springer.com/article/10.1007/BF01309428
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know