Thermotropic lipid phase separations in human platelet and rat liver plasma membranes
The Journal of Membrane Biology, ISSN: 0022-2631, Vol: 76, Issue: 2, Page: 139-149
1983
- 33Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations33
- Citation Indexes33
- 33
- CrossRef27
- Captures5
- Readers5
Article Description
Electron spin resonance (ESR) studies were conducted on human platelet plasma membranes using 5-nitroxide stearate, I(12,3). The polarity-corrected order parameter S and polarity-uncorrected order parameters S(T) and S(T) were independent of probe concentration at low I(12,3)/membrane protein ratios. At higher ratios, S and S(T) decreased with increasing probe concentration while S(T) remained unchanged. This is the result of enhanced radical interactions due to probe clustering. A lipid phase separation occurs in platelet membranes that segregates I(12,3) for temperatures less than 37°C. As Arrhenius plots of platelet acid phosphatase activity exhibit a break at 35 to 36°C, this enzyme activity may be influenced by the above phase separation. Similar experiments were performed on native [cholesterol/phospholipid ratio (C/P)=0.71] and cholesterol-enriched [C/P=0.85] rat liver plasma membranes. At 36°C, cholesterol loading reduces I(12,3) flexibility and decreases the probe ratio at which radical interactions are apparent. The latter effects are attributed to the formation of cholesterol-rich lipid domains, and to the inability of I(12,3) to partition into these domains because of steric hinderance. Cholesterol enrichment increases both the high temperature onset of the phase separation occurring in liver membranes from 28° to 37°C and the percentage of probe-excluding, cholesterolrich lipid domains at elevated temperatures. A model is discussed attributing the lipid phase separation in native liver plasma membranes to cholesterol-rich and-poor domains. As I(12,3) behaves similarly in cholesterol-enriched liver and human platelet plasma membranes, cholesterol-rich and-poor domains probably exist in both systems at physiologic temperatures. © 1983 Springer-Verlag.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0021037771&origin=inward; http://dx.doi.org/10.1007/bf02000614; http://www.ncbi.nlm.nih.gov/pubmed/6315947; http://link.springer.com/10.1007/BF02000614; http://www.springerlink.com/index/pdf/10.1007/BF02000614; http://www.springerlink.com/index/10.1007/BF02000614; https://dx.doi.org/10.1007/bf02000614; https://link.springer.com/article/10.1007/BF02000614
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know