3D field theories with Chern-Simons term for large N in the Weyl gauge
Journal of High Energy Physics, ISSN: 1029-8479, Vol: 2015, Issue: 1
2015
- 22Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Abstract: Three dimensional, U(N) symmetric, field theory with fermion matter coupled to a topological Chern-Simons term, in the large N limit is analyzed in details. We determine the conditions for the existence of a massless conformal invariant ground state as well as the conditions for a massive phase. We analyze the phase structure and calculate gauge invariant corelators comparing them in several cases to existing results. In addition to the non-critical explicitly broken scale invariance massive case we consider also a massive ground state where the scale symmetry is spontaneously broken. We show that such a phase appears only in the presence of a marginal deformation that is introduced by adding a certain scalar auxiliary field and discuss the fermion-boson dual mapping. The ground state contains in this case a massless U(N) singlet bound state goldstone boson- the dilaton whose properties are determined. We employ here the temporal gauge which is at variance with respect to past calculations using the light-cone gauge and thus, a check (though limited) of gauge independence is at hand. The large N properties are determined by using a field integral formalism and the steepest descent method. The saddle point equations, which take here the form of integral equations for non-local fields, determine the mass gap and the dressed fermion propagator. Vertex functions are calculated at leading order in 1/N as exact solutions of integral equations. From the vertex functions, we infer gauge invariant two-point correlation functions for scalar operators and a current. Indications about the consistency of the method are obtained by verifying that gauge-invariant quantities have a natural O(3) covariant form. As a further verification, in several occasions, a few terms of the perturbative expansion are calculated and compared with the exact results in the appropriate order.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84938264432&origin=inward; http://dx.doi.org/10.1007/jhep01(2015)054; http://link.springer.com/10.1007/JHEP01(2015)054; http://link.springer.com/content/pdf/10.1007/JHEP01(2015)054; http://dx.doi.org/10.1007/jhep01%282015%29054; https://dx.doi.org/10.1007/jhep01%282015%29054; https://link.springer.com/article/10.1007/JHEP01(2015)054
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know