PlumX Metrics
Embed PlumX Metrics

A new generation of simultaneous fits to LHC data using deep learning

Journal of High Energy Physics, ISSN: 1029-8479, Vol: 2022, Issue: 5
2022
  • 24
    Citations
  • 0
    Usage
  • 4
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    24
    • Citation Indexes
      24
  • Captures
    4

Article Description

We present a new methodology that is able to yield a simultaneous determination of the Parton Distribution Functions (PDFs) of the proton alongside any set of parameters that determine the theory predictions; whether within the Standard Model (SM) or beyond it. The SIMUnet methodology is based on an extension of the NNPDF4.0 neural network architecture, which allows the addition of an extra layer to simultaneously determine PDFs alongside an arbitrary number of such parameters. We illustrate its capabilities by simultaneously fitting PDFs with a subset of Wilson coefficients within the Standard Model Effective Field Theory framework and show how the methodology extends naturally to larger subsets of Wilson coefficients and to other SM precision parameters, such as the strong coupling constant or the heavy quark masses.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know