A new generation of simultaneous fits to LHC data using deep learning
Journal of High Energy Physics, ISSN: 1029-8479, Vol: 2022, Issue: 5
2022
- 24Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We present a new methodology that is able to yield a simultaneous determination of the Parton Distribution Functions (PDFs) of the proton alongside any set of parameters that determine the theory predictions; whether within the Standard Model (SM) or beyond it. The SIMUnet methodology is based on an extension of the NNPDF4.0 neural network architecture, which allows the addition of an extra layer to simultaneously determine PDFs alongside an arbitrary number of such parameters. We illustrate its capabilities by simultaneously fitting PDFs with a subset of Wilson coefficients within the Standard Model Effective Field Theory framework and show how the methodology extends naturally to larger subsets of Wilson coefficients and to other SM precision parameters, such as the strong coupling constant or the heavy quark masses.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85129699299&origin=inward; http://dx.doi.org/10.1007/jhep05(2022)032; https://link.springer.com/10.1007/JHEP05(2022)032; http://dx.doi.org/10.1007/jhep05%282022%29032; https://dx.doi.org/10.1007/jhep05%282022%29032; https://link.springer.com/article/10.1007/JHEP05(2022)032
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know