Supersymmetric protection and the Swampland
Journal of High Energy Physics, ISSN: 1029-8479, Vol: 2020, Issue: 6
2020
- 37Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
For certain terms in the action, supersymmetry can forbid an infinite number of possible contributions. We study whether such protection can occur in quantum gravity even without sufficient supersymmetry. We focus on whether the superpotential can vanish exactly in four-dimensional N = 1 theories, and if the prepotential can be exactly cubic in N = 2 theories. We investigate these questions in string theory and find that for almost all known string constructions the corrections allowed by supersymmetry do occur. However, we do find some special settings where all the corrections can be proven to vanish. These examples all share the common feature that they are related, through a certain orbifolding by a discrete gauged R-symmetry element, to a higher supersymmetric theory. Motivated by these results, we propose a Swampland criterion that any theory which enjoys such protection beyond its realised supersymmetry must have a direct connection to a higher supersymmetric theory.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85086910068&origin=inward; http://dx.doi.org/10.1007/jhep06(2020)168; https://link.springer.com/10.1007/JHEP06(2020)168; http://dx.doi.org/10.1007/jhep06%282020%29168; https://dx.doi.org/10.1007/jhep06%282020%29168; https://link.springer.com/article/10.1007/JHEP06(2020)168
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know