Entanglement entropy and phase space density: lowest Landau levels and 1/2 BPS states
Journal of High Energy Physics, ISSN: 1029-8479, Vol: 2022, Issue: 6
2022
- 6Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We consider the entanglement entropy of an arbitrary subregion in a system of N non-relativistic fermions in 2+1 dimensions in Lowest Landau Level (LLL) states. Using the connection of these states to those of an auxiliary 1 + 1 dimensional fermionic system, we derive an expression for the leading large-N contribution in terms of the expectation value of the phase space density operator in 1 + 1 dimensions. For appropriate subregions the latter can replaced by its semiclassical Thomas-Fermi value, yielding expressions in terms of explicit integrals which can be evaluated analytically. We show that the leading term in the entanglement entropy is a perimeter law with a shape independent coefficient. Furthermore, we obtain analytic expressions for additional contributions from sharp corners on the entangling curve. Both the perimeter and the corner pieces are in good agreement with existing calculations for special subregions. Our results are relevant to the integer quantum Hall effect problem, and to the half-BPS sector of N = 4 Yang Mills theory on S. In this latter context, the entanglement we consider is an entanglement in target space. We comment on possible implications to gauge-gravity duality.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85131716378&origin=inward; http://dx.doi.org/10.1007/jhep06(2022)046; https://link.springer.com/10.1007/JHEP06(2022)046; http://dx.doi.org/10.1007/jhep06%282022%29046; https://dx.doi.org/10.1007/jhep06%282022%29046; https://link.springer.com/article/10.1007/JHEP06(2022)046
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know