Top-philic heavy resonances in four-top final states and their EFT interpretation
Journal of High Energy Physics, ISSN: 1029-8479, Vol: 2021, Issue: 9
2021
- 18Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
With an expected rate of about one event per 100,000 top-quark pairs, four top-quark final states very rarely arise at the LHC. Though scarce, they offer a unique window onto top-quark compositeness, self-interactions and more generically, onto any top-philic new physics. By employing simplified models featuring heavy resonances, we study the range of validity of effective theory interpretations of current four top-quark analyses at the LHC and establish their future reach at the HL-LHC. We find that for the class of models under consideration, the effective field theory interpretations are not applicable. We therefore present the most up-to-date limits obtained from public CMS analyses using simplified models. Finally, we put forward a novel recasting strategy for the experimental results based on the production of top quarks with large transverse momentum.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85116266682&origin=inward; http://dx.doi.org/10.1007/jhep09(2021)143; https://link.springer.com/10.1007/JHEP09(2021)143; http://dx.doi.org/10.1007/jhep09%282021%29143; https://dx.doi.org/10.1007/jhep09%282021%29143; https://link.springer.com/article/10.1007/JHEP09(2021)143
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know