The complex heavy-quark potential in an anisotropic quark-gluon plasma — Statics and dynamics
Journal of High Energy Physics, ISSN: 1029-8479, Vol: 2022, Issue: 9
2022
- 4Citations
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations4
- Citation Indexes4
- CrossRef1
Article Description
We generalize a complex heavy-quark potential model from an isotropic QCD plasma to an anisotropic one by replacing the Debye mass m with an anisotropic screening mass depending on the quark pair alignment with respect to the direction of anisotropy. Such an angle-dependent mass is determined by matching the perturbative contributions in the potential model to the exact result obtained in the Hard-Thermal-Loop resummed perturbation theory. An advantage of the resulting potential model is that its angular dependence can be effectively described by using a set of angle-averaged screening masses as proposed in our previous work. Consequently, one could solve a one-dimensional Schrödinger equation with a potential model built by changing the anisotropic screening masses into the corresponding angle-averaged ones, and reproduce the full three-dimensional results for the binding energies and decay widths of low-lying quarkonium bound states to very high accuracy. Finally, turning to dynamics, we demonstrate that the one-dimensional effective potential can accurately describe the time evolution of the vacuum overlaps obtained using the full three-dimensional anisotropic potential. This includes the splitting of different p-wave polarizations.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85138729973&origin=inward; http://dx.doi.org/10.1007/jhep09(2022)200; https://link.springer.com/10.1007/JHEP09(2022)200; http://dx.doi.org/10.1007/jhep09%282022%29200; https://dx.doi.org/10.1007/jhep09%282022%29200; https://link.springer.com/article/10.1007/JHEP09(2022)200
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know