A plethora of long-range neutrino interactions probed by DUNE and T2HK
Journal of High Energy Physics, ISSN: 1029-8479, Vol: 2024, Issue: 9
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Upcoming neutrino experiments will soon search for new neutrino interactions more thoroughly than ever before, boosting the prospects of extending the Standard Model. In anticipation of this, we forecast the capability of two of the leading long-baseline neutrino oscillation experiments, DUNE and T2HK, to look for new flavor-dependent neutrino interactions with electrons, protons, and neutrons that could affect the transitions between different flavors. We interpret their sensitivity in the context of long-range neutrino interactions, mediated by a new neutral boson lighter than 10 eV, and sourced by the vast amount of nearby and distant matter in the Earth, Moon, Sun, Milky Way, and beyond. For the first time, we explore the sensitivity of DUNE and T2HK to a wide variety of U(1) symmetries, built from combinations of lepton and baryon numbers, each of which induces new interactions that affect oscillations differently. We find ample sensitivity: in all cases, DUNE and T2HK may constrain the existence of the new interaction even if it is supremely feeble, may discover it, and, in some cases, may identify the symmetry responsible for it.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85204228591&origin=inward; http://dx.doi.org/10.1007/jhep09(2024)055; https://link.springer.com/10.1007/JHEP09(2024)055; http://dx.doi.org/10.1007/jhep09%282024%29055; https://dx.doi.org/10.1007/jhep09%282024%29055; https://link.springer.com/article/10.1007/JHEP09(2024)055
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know