Running beyond ALPs: shift-breaking and CP-violating effects
Journal of High Energy Physics, ISSN: 1029-8479, Vol: 2023, Issue: 11
2023
- 4Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We compute the renormalization group equations (RGEs) of the Standard Model effective field theory (EFT) extended with a real scalar singlet, up to dimension-five and one-loop accuracy. We compare our renormalization results with those found in the shift-symmetry preserving limit, which characterizes axion-like particles (ALPs). The matching and running equations below the electroweak scale are also obtained, including the mixing effects in the scalar sector. Such mixing leads to interesting phenomenological consequences that are absent in the EFT at the renormalizable level, namely new correlations among the triplet and quartic Higgs couplings are predicted. All RGEs obtained in this work are implemented in a new Mathematica package — ALPRunner, together with functions to solve the running numerically for an arbitrary set of UV parameters. As an application, we obtain electric dipole moment constraints on particular regions of the singlet parameter space, and quantify the level of shift-breaking in these regions.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85177636050&origin=inward; http://dx.doi.org/10.1007/jhep11(2023)133; https://link.springer.com/10.1007/JHEP11(2023)133; http://dx.doi.org/10.1007/jhep11%282023%29133; https://dx.doi.org/10.1007/jhep11%282023%29133; https://link.springer.com/article/10.1007/JHEP11(2023)133
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know