PlumX Metrics
Embed PlumX Metrics

Jet shape resummation using soft-collinear effective theory

Journal of High Energy Physics, ISSN: 1029-8479, Vol: 2014, Issue: 12
2014
  • 39
    Citations
  • 0
    Usage
  • 7
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    39
    • Citation Indexes
      39
  • Captures
    7

Article Description

Abstract: The jet shape is a classic jet substructure observable that probes the average transverse energy profile inside a reconstructed jet. The studies of jet shapes in proton-proton collisions have served as precision tests of perturbative Quantum Chromodynamics (QCD). They have also recently become the baseline for studying the in-medium modification of parton showers in ultra-relativistic nucleus-nucleus collisions. The jet shape is a function of two angular parameters R and r, which can be at hierarchical scales. Its calculation suffers from large logarithms of the ratio between the two scales, and these phase space logarithms can be conveniently resummed in the framework of soft-collinear effective theory (SCET). We find that, up to power corrections, the integral jet shape can be expressed in a factorized form which involves only the ratio between two jet energy functions. Resummation is performed at next-to-leading logarithmic order using renormalization-group evolution techniques. Comparisons to jet shape measurements at the Large Hadron Collider (LHC) are presented to verify the dominant role of the collinear parton shower and to identify the kinematic region in which power-suppressed soft modes and non-perturbative effects may play a role.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know