Small Extracellular Vesicles Loaded with Immunosuppressive miRNAs Leads to an Inhibition of Dendritic Cell Maturation
Archivum Immunologiae et Therapiae Experimentalis, ISSN: 1661-4917, Vol: 70, Issue: 1, Page: 27
2022
- 6Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In particular conditions, inhibition of an immune response is required to prevent tissue damage. Among these conditions are diseases caused by an over-reactive immune response, such as autoimmune or allergic disorders, or imminent organ rejection after transplantation. To avoid tissue damage, drug-mediated systemic immune suppression is an option, but it comes with high costs in the form of susceptibility to viral and bacterial infections. Thus, the induction of antigen-specific tolerance is preferable. Extracellular vesicles (EVs) are capable of delivering antigen together with immunosuppressive signals and may be used to specifically induce antigen-specific tolerance. However, naturally occurring EVs are heterogeneous and not all of them show immunosuppressive character. In our trials to engineer cell culture derived EVs to increase their tolerogenic potential, we equipped them with immunosuppressive miRNA mimics. Small EVs (sEVs) were isolated and purified from the human monocytic THP-1 cell line or from healthy donor peripheral blood mononuclear cells, and electroporated with miR-494 and miR-146a mimics. The acquired immunosuppressive potential of the modified sEVs was demonstrated by their ability to alter the major histocompatibility complex molecules and co-stimulatory receptors present on dendritic cells (DCs). To avoid allogeneic responses, the same cells that produced the sEVs served also as recipient cells. In contrast to the treatment with unmodified sEVs, the tolerogenic sEVs impeded lipopolysaccharide-induced maturation and kept DCs in a more immature developmental stage. Our experiments show that simple manipulations of sEVs using immunosuppressive cargo can lead to the inhibition of DC maturation.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85140995767&origin=inward; http://dx.doi.org/10.1007/s00005-022-00664-7; http://www.ncbi.nlm.nih.gov/pubmed/36318344; https://link.springer.com/10.1007/s00005-022-00664-7; https://dx.doi.org/10.1007/s00005-022-00664-7; https://link.springer.com/article/10.1007/s00005-022-00664-7
Walter de Gruyter GmbH
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know