Maximal Operator in Variable Exponent Generalized Morrey Spaces on Quasi-metric Measure Space
Mediterranean Journal of Mathematics, ISSN: 1660-5454, Vol: 13, Issue: 3, Page: 1151-1165
2016
- 19Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We consider generalized Morrey spaces L( X) on quasi-metric measure spaces X, d, μ, in general unbounded, with variable exponent p(x) and a general function φ( x, r) defining the Morrey-type norm. No linear structure of the underlying space X is assumed. The admission of unbounded X generates problems known in variable exponent analysis. We prove the boundedness results for maximal operator known earlier only for the case of bounded sets X. The conditions for the boundedness are given in terms of the so called supremal inequalities imposed on the function φ( x, r) , which are weaker than Zygmund-type integral inequalities often used for characterization of admissible functions φ. Our conditions do not suppose any assumption on monotonicity of φ( x, r) in r.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know