Characterization of Different Rainfall Types from Surface Observations Over a Tropical Location
Pure and Applied Geophysics, ISSN: 1420-9136, Vol: 177, Issue: 2, Page: 1111-1123
2020
- 3Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This study characterizes different rainfall types using surface-based instruments (i.e. micro rain radar and laser precipitation monitor) installed at the Indian Institute of Technology Bhubaneswar Jatani, Odisha, India. A total of twelve rainfall cases including four from each season, i.e. pre-monsoon, monsoon and post-monsoon, are considered. The segregation of rainfall is carried out using radar reflectivity and rainfall intensity. In general, initial rainfall is dominantly convective and followed by a stratiform type. Two distinct maxima of radar reflectivity are noted at 3 and 5 km, suggesting the presence of high liquid water content and a melting band. The presence of liquid water content suggests occurrence of a warm rain process with shallow, intense convective cores. Results indicate a higher drop number density below 2 km with smaller size drops for convective rainfall and vice versa for the stratiform rainfall. Furthermore, Z–R relationships are computed for all the cases using a linear regression method, and the results suggest that the stratiform rainfall shows a higher slope parameter and lower intercept parameter as compared to convective rainfall. The distribution of drop number density shows a mono-modal and bimodal pattern for convective and stratiform rainfall, respectively.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know