The effects of experimental whole-lake mixing on horizontal spatial patterns of fish and Zooplankton
Aquatic Sciences, ISSN: 1420-9055, Vol: 79, Issue: 3, Page: 543-556
2017
- 8Citations
- 25Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We examined horizontal spatial patterns of fish densities and zooplankton biomass at a fine spatial scale of 50 m across seasons before, during, and after an experimental lake destratification to determine how interacting trophic levels may respond to alteration of thermal stratification. We used semivariogram analysis to calculate maximum distances of autocorrelation for fish and zooplankton separately, and cross variograms to determine whether relationships between fish and zooplankton are positive or negative. Fish became more dispersed during the manipulation, likely due to a flight response with the loss of preferred cold water habitat. There were no changes in zooplankton horizontal distributions with mixing, but we detected seasonal trends in distribution and biomass. We detected positive relationships between fish densities and zooplankton biomass for portions of the year, but did not detect any negative relationships. There was no effect of lake mixing on spatial interactions between fish and zooplankton. Our results indicate that external factors, such as seasonal wind patterns, may drive whole-lake zooplankton distributions, and that fish respond horizontally to change in vertically structured processes, especially when reliant on depth-dependent variables such as cold water.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know