Changes in dissolved organic matter and microbial activity in runoff waters of boreal mires after restoration
Aquatic Sciences, ISSN: 1420-9055, Vol: 80, Issue: 2
2018
- 11Citations
- 32Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A considerable proportion of boreal mires have been drained for soil amelioration purposes. In response to drainage-induced degradation, restoration practices have been implemented in recent decades. Restoration by raising the water level is often followed by changes in the quality of runoff waters, especially in concentrations of dissolved organic carbon (DOC), nitrogen (N) and phosphorus (total P, PO-P). We studied how mire restoration affected bacterial production (BP), bacterial growth efficiency (BGE%) and respiration (R) in mire runoff waters from spruce swamps and Sphagnum pine bogs in south-central Finland. The quality of runoff water was monitored for 8 years (2008–2015) and bacterial activity was measured during 3 years (2010–2012) at runoff weir sites, including two pristine controls, one drained control and four treatment sites. The concentrations of DOC, N and P increased for 3–5 years after restoration. The increased availability of nutrients was followed by doubled BP (from ca. 0.34 to 0.88 µmol C L d, averages of restored sites) and BGE% (from ca. 2.7 to 9.2%), whereas microbial respiration was only slightly increased. However, bacterial activity in mire waters was low compared with those generally measured in river and lake waters. This was presumably related to the recalcitrant quality of the mire-originated DOC, which was not clearly influenced by restoration. Dissolved organic matter (DOM) of low bioavailability contributes to browning of headwaters. As our study was focused only on short-term (1–5 years) effects, more research is needed for evaluating long-term impacts of peatland origin DOM on carbon fluxes, microbial activity and food webs of recipient aquatic ecosystems.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know