PlumX Metrics
Embed PlumX Metrics

An anisotropic flow law for incompressible polycrystalline materials

Zeitschrift fur Angewandte Mathematik und Physik, ISSN: 0044-2275, Vol: 57, Issue: 1, Page: 160-181
2005
  • 34
    Citations
  • 0
    Usage
  • 10
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    34
    • Citation Indexes
      34
  • Captures
    10

Article Description

New and explicit anisotropic constitutive equations between the stretching and deviatoric stress tensors for the two- and three-dimensional cases of incompressible polycrystalline materials are presented. The anisotropy is assumed to be driven by an Orientation Distribution Function (ODF). The polycrystal is composed of transversally isotropic crystallites, the lattice orientation of which can be characterized by a single unit vector. The proposed constitutive equations are valid for any frame of reference and for every state of deformation. The basic assumption of this method is that the principle directions of the stretching and of the stress deviator are the same in the isotropic as well as in the anisotropic case. This means that the proposed constitutive laws are able to model the effects of anisotropy only via a change of the fluidity due to a change of the ODF. Such an assumption is justified to guarantee that, besides knowledge of the parameters involved in the isotropic constitutive equation, the anisotropic material response is completely characterized by only one additional parameter, a type of enhancement factor. Explicit comparisons with experimental data are conducted for Ih-ice.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know