Single-strand conformation polymorphism analysis of the glucose transporter gene GLUT1 in maturity-onset diabetes of the young
Journal of Molecular Medicine, ISSN: 0946-2716, Vol: 79, Issue: 5-6, Page: 270-274
2001
- 3Citations
- 10Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
- CrossRef3
- Captures10
- Readers10
- 10
Article Description
Maturity-onset diabetes of the young (MODY), an autosomal dominant, early-onset form of type-2 diabetes, is caused by mutations in five different genes all leading to defect(s) in the pancreatic β cell. However, some patients with this form of diabetes do not bear a mutation in any of the known (MODY1 - MODY5) loci, a notion prompting the search for new MODY genes. Clinical and genetic data point toward a defect in β cell function in the majority of patients with MODY, and partners of the glucose-sensing device are reasonable functional candidates. The high-capacity glucose transporter GLUT2 has the ideal kinetic features for performing this task. However, complete GLUT2 deficiency in humans leads to hepato-renal glycogenosis (Fanconi-Bickel syndrome), and heterozygous GLUT2 mutations apparently behave in a recessive manner. Furthermore, in the human β cell GLUT1 mRNA is predominant when compared to GLUT2 and glucose influx appears to be largely mediated by this low-K transporter. Thus, we looked for the presence of sequence variants by polymerase chain reaction and single-strand conformation polymorphism (PCR-SSCP) within the GLUT1 gene in 90 Italian pedigrees negative at the search for mutations in glucokinase (MODY2) and hepatocyte nuclear factor-1α (MODY3), the two genes responsible for about 60% of MODY cases in Italian children. We found three already described silent mutations and a new single base deletion in position -173 of the 5′ regulatory region. The -173delA variant, which was detected in the heterozygous or homozygous state in 30.8% of MODY patients examined and is located in a Nuclear Factor Y binding sequence, is not associated with hyperglycemia in affected relatives of MODY probands. In conclusion, it appears from these results that the glucose transporter gene GLUT1 is unlikely to play a major role in the etiology of MODY diabetes.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0034937706&origin=inward; http://dx.doi.org/10.1007/s001090100220; http://www.ncbi.nlm.nih.gov/pubmed/11485019; http://link.springer.com/10.1007/s001090100220; https://dx.doi.org/10.1007/s001090100220; https://link.springer.com/article/10.1007/s001090100220
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know