Reliability measure approach for confidence-based design optimization under insufficient input data
Structural and Multidisciplinary Optimization, ISSN: 1615-1488, Vol: 60, Issue: 5, Page: 1967-1982
2019
- 26Citations
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In most of the reliability-based design optimization (RBDO) researches, accurate input statistical model has been assumed to concentrate on the variability of random variables; however, only a limited number of data are available to quantify the input statistical model in many practical engineering applications. In other words, irreducible variability and uncertainty due to lack of knowledge exist simultaneously in random design variables, which may result in uncertainty of reliability. Therefore, the uncertainty induced by insufficient data has to be accounted for RBDO to guarantee the confidence of reliability. Using the Bayesian approach, the uncertainty of input distributions is successfully propagated to a cumulative distribution function (CDF) of reliability under reasonable assumptions, but it requires a number of function evaluations in double-loop Monte Carlo simulation (MCS). To tackle this challenge, the reliability measure approach (RMA) in confidence-based design optimization (CBDO) is proposed to handle the uncertainty of reliability following the idea of performance measure approach (PMA) in RBDO. Input distribution parameters are transformed to random variables following the standard normal distribution for the most probable point (MPP) search based on the proposed stochastic sensitivity analysis of reliability. Therefore, the reliability is approximated at MPP with respect to input distribution parameters. The proposed CBDO can treat confidence constraints employing the reliability value at the target confidence level that is approximated by MPP in standard normal space. In conclusion, CBDO can be performed in a probabilistic space of input distribution parameters corresponding to the conventional U-space in RBDO to yield the probability (confidence) that reliability is larger than the target reliability. The proposed method can significantly reduce the number of function evaluations by eliminating outer-loop MCS while maintaining acceptable accuracy. Numerical examples are used to demonstrate the effectiveness of the developed sensitivity analysis and RMA to estimate the confidence of reliability in CBDO.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85067305139&origin=inward; http://dx.doi.org/10.1007/s00158-019-02299-3; http://link.springer.com/10.1007/s00158-019-02299-3; http://link.springer.com/content/pdf/10.1007/s00158-019-02299-3.pdf; http://link.springer.com/article/10.1007/s00158-019-02299-3/fulltext.html; https://dx.doi.org/10.1007/s00158-019-02299-3; https://link.springer.com/article/10.1007/s00158-019-02299-3
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know