A structured methodology for the design of a human-robot collaborative assembly workplace
International Journal of Advanced Manufacturing Technology, ISSN: 1433-3015, Vol: 102, Issue: 5-8, Page: 2663-2681
2019
- 66Citations
- 129Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The trend towards mass customization puts traditional automation solutions under pressure. In addition, an aging working population increases the need to improve ergonomics at the workplace. Human-robot collaboration is considered as a solution for these challenges at the workstation level, as it combines the flexibility of the human with the consistency of robots. While the technology supporting the implementation of close human robot collaboration is maturing rapidly, the development of supporting design methodologies is lagging behind. The aim of this paper is to provide a generic methodology including a chain of four supporting procedure blocks for information extraction and processing and collaborative assembly solution generation and evaluation. The first block extracts product and assembly sequence constraints from CAD models. This information is fed into the second block where the previously identified tasks are decomposed into lower level work elements, for which the functional requirements are identified. These requirements are then used in the third block, in order to determine resource capability and safe collaboration possibilities. In the fourth block, the previous information is combined to generate and evaluate possible collaborative product assembly sequences. These sequences consist of work allocation, temporal distribution of work, and corresponding layout constraints.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know