A turning simulation environment for geometric error estimation of thin-walled parts
International Journal of Advanced Manufacturing Technology, ISSN: 1433-3015, Vol: 119, Issue: 1-2, Page: 789-809
2022
- 2Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Machining of thin-walled parts is a key process in many industries such as aviation and marine and power engineering. During such machining operation, very aggressive cutting conditions such as large feed rate, higher cutting speed, and large depth of cut are used to achieve higher material removal rate. During machining, thin-walled workpiece faces significant elastic deformation due to higher cutting forces leading to dimensional and geometric inaccuracy to the component. The present research work aims to develop a multi-step and multi-level turning simulation environment for estimation of various geometric errors such as straightness, circularity, and cylindricity of thin-walled part. In the proposed simulation environment, various modules such as process geometry, cutting force, tool deflection, and surface error generation have been developed in MATLAB. On the other end, the modules such as part geometry, workpiece deflection, and material removal are made using finite element analysis technique in APDL environment of the ANSYS commercial software. The estimated 3D turned surface and concerned geometric errors can be obtained as outcomes of the simulation environment without conducting expensive actual machining operation for varying cutting conditions. In order to estimate geometric errors accurately, the combined effect of tangential and radial force components are equally important to take care of geometrical shape change and peripheral thinning of thin-wall parts. The proposed simulation environment can be used as a convenient and cost-effective tool for process planners and machining practitioners for adopting a suitable error compensation strategy. Machining experiments are performed further to conform the validity of simulation environment by comparing the predicted results to their measured counterparts.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know