A hybrid DMAIC framework for integrating response surface methodology and multi-objective optimization methods
International Journal of Advanced Manufacturing Technology, ISSN: 1433-3015, Vol: 122, Issue: 9-10, Page: 4139-4164
2022
- 1Citations
- 12Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In many practical situations, it is important to evaluate the relationships between the factors that compose an industrial process and their effects on one or more response variables that are of interest to an enterprise. The main contribution of this present study is to propose a new conceptual hybrid framework based on the DMAIC (Define, Measure, Analyze, Improve, and Control) methodological structure, to optimize complex experimental problems with multiple responses. This procedure combines Response Surface Methodology, with the Desirability (D), Modified Desirability (MD), Compromise Programming (CP) functions, with Generalized Reduced Gradient (GRG) and Evolutionary Algorithms (EA). We made real application to a glass lamination process case study to describe how to use the proposed framework. The procedure allowed several configurations to be tested involving the D, MD and CP functions, adopting the GRD and EV, to optimize the studied industrial process. The best configuration was defined by a practical confirmation experiment and validated by company engineers and experts. As examples of the advantages of adopting the proposed framework in the glass lamination problems, the best solutions resulted in a 49.86% increase in grinding wheel shelf life, corresponding to a 927kg reduction of steel-use per year, and a 41.7% reduction in dressing stone consumption, saving 17,200 stones per year.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know