Bayesian selection of best subsets via hybrid search
Computational Statistics, ISSN: 1613-9658, Vol: 36, Issue: 3, Page: 1991-2007
2021
- 5Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Over the past decades, variable selection for high-dimensional data has drawn increasing attention. With a large number of predictors, there rises a big challenge for model fitting and prediction. In this paper, we develop a new Bayesian method of best subset selection using a hybrid search algorithm that combines a deterministic local search and a stochastic global search. To reduce the computational cost of evaluating multiple candidate subsets for each update, we propose a novel strategy that enables us to calculate exact marginal likelihoods of all neighbor models simultaneously in a single computation. In addition, we establish model selection consistency for the proposed method in the high-dimensional setting in which the number of possible predictors can increase faster than the sample size. Simulation study and real data analysis are conducted to investigate the performance of the proposed method.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know