Stochastic frontier estimation through parametric modelling of quantile regression coefficients
Empirical Economics, ISSN: 1435-8921, Vol: 64, Issue: 2, Page: 869-896
2023
- 3Citations
- 15Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Stochastic frontiers are a very popular tool used to compare production units in terms of efficiency. The parameters of this class of models are usually estimated through the use of the classic maximum likelihood method even, in the last years, some authors suggested to conceive and estimate the productive frontier within the quantile regression framework. The main advantages of the quantile approach lie in the weaker assumptions about data distribution and in the greater robustness to the presence of outliers respect to the maximum likelihood approach. However, empirical evidence and theoretical contributions have highlighted that the quantile regression applied to the tails of the conditional distribution, namely the frontiers, suffers from instability in estimates and needs specific tools and approaches. To avoid this limitation, we propose to model the parameters of the stochastic frontier as a function of the quantile in order to smooth its trend and, consequently, reduce its instability. The approach has been illustrated using real data and simulated experiments confirming the good robustness and efficiency properties of the proposed method.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know