Human risk assessment of 4-n-nonylphenol (4-n-NP) using physiologically based pharmacokinetic (PBPK) modeling: analysis of gender exposure differences and application to exposure analysis related to large exposure variability in population
Archives of Toxicology, ISSN: 1432-0738, Vol: 96, Issue: 10, Page: 2687-2715
2022
- 12Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations12
- Citation Indexes12
- 12
- Captures4
- Readers4
Article Description
As a toxic substance, 4-n-nonylphenol (4-n-NP) or 4-nonylphenol (4-NP) is widely present in the environment. 4-n-NP is a single substance with a linear-alkyl side chain, but 4-NP usually refers to a random mixture containing various branched types. Unfortunately, human risk assessment and/or exposure level analysis for 4-n-NP (or 4-NP) were almost nonexistent, and related research was urgently needed. This study aimed to analyze the various exposures of 4-n-NP (or 4-NP) through development of a physiologically based-pharmacokinetic (PBPK) model considering gender difference in pharmacokinetics of 4-n-NP and its application to human risk assessment studies. A PBPK model was newly developed considering gender differences in 4-n-NP pharmacokinetics and applied to a human risk assessment for each gender. Exposure analysis was performed using a PBPK model that considered gender differences in 4-n-NP (or 4-NP) exposure and high variabilities in several countries. Furthermore, an extended application was attempted as a human risk assessment for random mixture 4-NP, which is difficult to accurately evaluate in reality. External-exposure and margin-of-safety estimated with the same internal exposure amount differed between genders, meaning the need for a differentiated risk assessment considering gender. Exposure analysis based on biomonitoring data confirmed large variability in exposure to 4-n-NP (or 4-NP) by country, group, and period. External-exposures estimated using PBPK model varied widely, ranging from 0.039 to 63.875 mg/kg/day (for 4-n-NP or 4-NP). By country, 4-n-NP (or 4-NP) exposure was higher in females than in males and the margin-of-safety tended to be low. Overall, exposure to 4-n-NP (or 4-NP) in populations was largely not safe, suggesting need for ongoing management and monitoring. Considering low in vivo accumulation confirmed by PBPK model, risk reduction of 4-n-NP is possible by reducing its use.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85132137557&origin=inward; http://dx.doi.org/10.1007/s00204-022-03328-9; http://www.ncbi.nlm.nih.gov/pubmed/35723719; https://link.springer.com/10.1007/s00204-022-03328-9; https://dx.doi.org/10.1007/s00204-022-03328-9; https://link.springer.com/article/10.1007/s00204-022-03328-9
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know