Incompatible Sets of Gradients and Metastability
Archive for Rational Mechanics and Analysis, ISSN: 1432-0673, Vol: 218, Issue: 3, Page: 1363-1416
2015
- 11Citations
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We give a mathematical analysis of a concept of metastability induced by incompatibility. The physical setting is a single parent phase, just about to undergo transformation to a product phase of lower energy density. Under certain conditions of incompatibility of the energy wells of this energy density, we show that the parent phase is metastable in a strong sense, namely it is a local minimizer of the free energy in an L neighbourhood of its deformation. The reason behind this result is that, due to the incompatibility of the energy wells, a small nucleus of the product phase is necessarily accompanied by a stressed transition layer whose energetic cost exceeds the energy lowering capacity of the nucleus. We define and characterize incompatible sets of matrices, in terms of which the transition layer estimate at the heart of the proof of metastability is expressed. Finally we discuss connections with experiments and place this concept of metastability in the wider context of recent theoretical and experimental research on metastability and hysteresis.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know