Analgesic, antiallodynic, and anticonvulsant activity of novel hybrid molecules derived from N-benzyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide and 2-(2,5-dioxopyrrolidin-1-yl)butanamide in animal models of pain and epilepsy
Naunyn-Schmiedeberg's Archives of Pharmacology, ISSN: 1432-1912, Vol: 390, Issue: 6, Page: 567-579
2017
- 19Citations
- 22Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations19
- Citation Indexes17
- 17
- CrossRef3
- Patent Family Citations2
- Patent Families2
- Captures22
- Readers22
- 22
Article Description
The purpose of the present study was to examine the analgesic activity of six novel hybrid molecules, which demonstrated in the previous research anticonvulsant activity in the maximal electroshock seizure (MES) and subcutaneous pentylenetetrazole seizure (scPTZ) tests in mice. The antinociceptive properties were estimated in three models of pain in mice—the hot plate test, the formalin test, and in the oxaliplatin-induced neuropathy. Moreover, extended anticonvulsant studies were carried out and the antiseizure activity was investigated in the 6-Hz test. Considering drug safety evaluation, the influence of compounds on locomotor activity and contextual memory were checked. Furthermore, chosen molecules were tested in vitro for potential hepatotoxicity. To explain the probable mechanism of action, the radioligand binding assays were performed. In both phases of formalin test, analgesic activity demonstrated compounds 4, 8, and 9. These agents relieved also mechanical allodynia in oxaliplatin-induced model of neuropathic pain. At active doses, they did not influence locomotor activity of mice. Moreover, for compounds 8 and 9, no deleterious effect on memory was observed, but compound 4 might induce memory deficits. All tested compounds (4, 5, 8, 9, 15, and 16) inhibited psychomotor seizures with the ED values = 24.66–47.21 mg/kg. The binding studies showed that compound 4 only at the high concentrations revealed the effective binding to the neuronal sodium channels and moderately binding to the L-type calcium (verapamil site) channels and NMDA receptors. The present preclinical results proved that novel hybrid molecules demonstrate very promising anticonvulsant and analgesic activity.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85012157884&origin=inward; http://dx.doi.org/10.1007/s00210-017-1358-3; http://www.ncbi.nlm.nih.gov/pubmed/28188357; http://link.springer.com/10.1007/s00210-017-1358-3; https://dx.doi.org/10.1007/s00210-017-1358-3; https://link.springer.com/article/10.1007/s00210-017-1358-3
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know