Second-generation antipsychotics and metabolism alterations: a systematic review of the role of the gut microbiome
Psychopharmacology, ISSN: 1432-2072, Vol: 236, Issue: 5, Page: 1491-1512
2019
- 70Citations
- 170Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations70
- Citation Indexes70
- 70
- CrossRef7
- Captures170
- Readers170
- 170
Review Description
Rationale: Multiple drugs are known to induce metabolic malfunctions, among them second-generation antipsychotics (SGAs). The pathogenesis of such adverse effects is of multifactorial origin. Objectives: We investigated whether SGAs drive dysbiosis, assessed whether gut microbiota alterations affect body weight and metabolic outcomes, and looked for the possible mechanism of metabolic disturbances secondary to SGA treatment in animal and human studies. Methods: A systematic literature search (PubMed/Medline/Embase/ClinicalTrials.gov/PsychInfo) was conducted from database inception until 03 July 2018 for studies that reported the microbiome and weight alterations in SGA-treated subjects. Results: Seven articles reporting studies in mice (experiments = 8) and rats (experiments = 3) were included. Olanzapine was used in five and risperidone in six experiments. Only three articles (experiments = 4) in humans fit our criteria of using risperidone and mixed SGAs. The results confirmed microbiome alterations directly (rodent experiments = 5, human experiments = 4) or indirectly (rodent experiments = 4) with predominantly increased Firmicutes abundance relative to Bacteroidetes, as well as weight gain in rodents (experiments = 8) and humans (experiments = 4). Additionally, olanzapine administration was found to induce both metabolic alterations (adiposity, lipogenesis, plasma free fatty acid, and acetate levels increase) (experiments = 3) and inflammation (experiments = 2) in rodents, whereas risperidone suppressed the resting metabolic rate in rodents (experiments = 5) and elevated fasting blood glucose, triglycerides, LDL, hs-CRP, antioxidant superoxide dismutase, and HOMA-IR in humans (experiment = 1). One rodent study suggested a gender-dependent effect of dysbiosis on body weight. Conclusions: Antipsychotic treatment-related microbiome alterations potentially result in body weight gain and metabolic disturbances. Inflammation and resting metabolic rate suppression seem to play crucial roles in the development of metabolic disorders.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85056825438&origin=inward; http://dx.doi.org/10.1007/s00213-018-5102-6; http://www.ncbi.nlm.nih.gov/pubmed/30460516; http://link.springer.com/10.1007/s00213-018-5102-6; https://dx.doi.org/10.1007/s00213-018-5102-6; https://link.springer.com/article/10.1007/s00213-018-5102-6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know