Study of hydrogen-bonded clusters of 2-methoxyphenol-water
Theoretical Chemistry Accounts, ISSN: 1432-881X, Vol: 118, Issue: 5-6, Page: 947-957
2007
- 9Citations
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Various hydrogen-bonded clusters of 2-methoxyphenol (2MP) with water have been analyzed using ab initio methods and Atoms in Molecules (AIM) theory. The intramolecular hydrogen bond energy (and enthalpy) for 2MP was evaluated from two different methods. The results of rotational barriers method are in better agreement with experimental data. Binding energies, vibrational frequencies and geometrical parameters were examined and compared for these complexes. It was shown that in the most stable complex, water acts both as a donor and an acceptor. The "bifurcated" complex was shown to be relatively stable based on energy values. Atoms in Molecules and Natural Bond Orbital (NBO) analysis were used to confirm the existence of hydrogen bonds and to compare the strengths of them. The results obtained from quantum mechanical, AIM and NBO calculations are in agreement with each other. © 2007 Springer-Verlag.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=36448976582&origin=inward; http://dx.doi.org/10.1007/s00214-007-0378-3; http://link.springer.com/10.1007/s00214-007-0378-3; http://www.springerlink.com/index/10.1007/s00214-007-0378-3; http://www.springerlink.com/index/pdf/10.1007/s00214-007-0378-3; https://dx.doi.org/10.1007/s00214-007-0378-3; https://link.springer.com/article/10.1007/s00214-007-0378-3
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know