The evolution of total internal reflection Raman spectroscopy for the chemical characterization of thin films and interfaces
Analytical and Bioanalytical Chemistry, ISSN: 1618-2650, Vol: 412, Issue: 24, Page: 6009-6022
2020
- 8Citations
- 20Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Total internal reflection (TIR) optical spectroscopies have been widely used for decades as non-destructive and surface-sensitive measurements of thin films and interfaces. Under TIR conditions, an evanescent wave propagates into the sample layer within a region approximately 50 nm to 2 μm from the interface, which limits the spatial extent of the optical signal. The most common TIR optical spectroscopies are fluorescence (i.e., TIRF) and infrared spectroscopy (i.e., attenuated total reflection infrared). Despite the first report of TIR Raman spectroscopy appearing in 1973, this method has not received the same attention to date. While TIR Raman methods can provide chemical specific information, it has been outshined in many respects by surface-enhanced Raman spectroscopy (SERS). TIR Raman spectroscopy, however, is garnering more interest for analyzing the chemical and physical properties of thin polymer films, self-assembled monolayers (SAMs), multilayered systems, and adsorption at an interface. Herein, we discuss the early experimental and computational work that laid the foundation for recent developments in the use of TIR Raman techniques. Recent applications of TIR Raman spectroscopy as well as modern TIR Raman instruments capable of measuring monolayer-sensitive vibrational modes on smooth metallic surfaces are also discussed. The use of TIR Raman spectroscopy has been on a rise and will continue to push the limits for chemical specific interfacial and thin film measurements. [Figure not available: see fulltext.].
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85081954845&origin=inward; http://dx.doi.org/10.1007/s00216-020-02510-1; http://www.ncbi.nlm.nih.gov/pubmed/32173790; http://link.springer.com/10.1007/s00216-020-02510-1; https://dx.doi.org/10.1007/s00216-020-02510-1; https://link.springer.com/article/10.1007/s00216-020-02510-1
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know