FTIR micro-spectroscopy using synchrotron-based and thermal source-based radiation for probing live bacteria
Analytical and Bioanalytical Chemistry, ISSN: 1618-2650, Vol: 412, Issue: 26, Page: 7049-7061
2020
- 18Citations
- 32Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations18
- Citation Indexes18
- 18
- Captures32
- Readers32
- 32
Article Description
Fourier transform infrared (FTIR) spectroscopy has proven to be a non-invasive tool to analyse cells without the hurdle of employing exogenous dyes or probes. Nevertheless, the study of single live bacteria in their aqueous environment has long remained a big challenge, due to the strong infrared absorption of water and the small size of bacteria compared to the micron-range infrared wavelengths of the probing photons. To record infrared spectra of bacteria in an aqueous environment, at different spatial resolutions, two setups were developed. A custom-built attenuated total reflection inverted microscope was coupled to a synchrotron-based FTIR spectrometer, using a germanium hemisphere. With such a setup, a projected spot size of 1 × 1 μm was achieved, which allowed spectral acquisition at the single-cell level in the 1800–1300 cm region. The second setup used a demountable liquid micro-chamber with a thermal source-powered FTIR microscope, in transmission geometry, for probing clusters of a few thousands of live cells in the mid-IR region (4000–975 cm). Both setups were applied for studying two strains of a model lactic acid bacterium exhibiting different cryo-resistances. The two approaches allowed the discrimination of both strains and revealed population heterogeneity among bacteria at different spatial resolutions. The multivariate analysis of spectra indicated that the cryo-sensitive cells presented the highest cell heterogeneity and the highest content of proteins with the α-helix structure. Furthermore, the results from clusters of bacterial cells evidenced phosphate and peptidoglycan vibrational bands associated with the cell envelope, as potential markers of resistance to environmental conditions. [Figure not available: see fulltext.]
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85089727092&origin=inward; http://dx.doi.org/10.1007/s00216-020-02835-x; http://www.ncbi.nlm.nih.gov/pubmed/32839857; https://link.springer.com/10.1007/s00216-020-02835-x; https://dx.doi.org/10.1007/s00216-020-02835-x; https://link.springer.com/article/10.1007/s00216-020-02835-x
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know