A portable personal glucose meter method for enzyme activity detection and inhibitory activity evaluation based on alkaline phosphatase-mediated reaction
Analytical and Bioanalytical Chemistry, ISSN: 1618-2650, Vol: 413, Issue: 9, Page: 2457-2466
2021
- 16Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations16
- Citation Indexes16
- 16
- Captures6
- Readers6
Article Description
In this study, an effective and portable method for enzyme activity detection and inhibitory activity evaluation was developed based on the alkaline phosphatase (ALP)-mediated reaction in a personal glucose meter (PGM). In this method, ALP catalyzes the hydrolysis of substrate amifostine (WR-2721) to produce ethanethiol (WR-1065), which can trigger the reduction of ferricyanide (K[Fe(CN)]), an electron transfer mediator in glucose test strips, to ferrocyanide ([KFe(CN)]) and generate a PGM-detectable signal. Thus, WR-1065 can be directly quantified by a PGM as simply as detecting glucose in blood. After being systematically optimized, the method was applied to evaluate the inhibitory activity of ten small-molecule compounds and six Cordyceps sinensis (CS) extracts on ALP. The results showed that adenosine-5-monophosphate and theophylline had high inhibitory activity, but two CS extracts have promotion potency on ALP with the values of –20.7 ± 1.3% and –46.6 ± 2.1%, respectively. Moreover, the binding sites and modes of small-molecule compounds to ALP were investigated by molecular docking, while a new substrate competitor with theoretically good inhibitory activity against ALP was designed by scaffold hopping. Finally, the accuracy of the PGM method for enzyme activity detection was assessed by detecting ALP from milk samples, and the recovery ranged from 87.7% to 116.9%. These results indicate that it is feasible to evaluate enzyme activity and the inhibitory activity of small-molecule compounds and CS extracts on ALP using a PGM based on ALP-mediated reaction. [Figure not available: see fulltext.]
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85102069286&origin=inward; http://dx.doi.org/10.1007/s00216-021-03187-w; http://www.ncbi.nlm.nih.gov/pubmed/33674935; http://link.springer.com/10.1007/s00216-021-03187-w; https://dx.doi.org/10.1007/s00216-021-03187-w; https://link.springer.com/article/10.1007/s00216-021-03187-w
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know