Microchip for continuous DNA analysis based on gel electrophoresis coupled with co-injection of size markers and in-channel staining
Analytical and Bioanalytical Chemistry, ISSN: 1618-2650, Vol: 413, Issue: 23, Page: 5685-5694
2021
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
A continuous-flow microchip enabling high-accuracy DNA analysis was developed. Serial consecutive analysis for multiple amplified DNA samples was demonstrated. The sample segments were continuously introduced to the microchip from the PCR device which was interfaced to the microchip through capillary tubing. Electrokinetic co-injection of the DNA samples with size marker enabled reproducible and reliable injection of the DNAs into the gel-filled separation channel providing accurate size determination of the DNA samples. Cross-contamination between serially introduced DNA samples was minimized by plugging a washing solution segment following the previous sample segment between two sample plugs. Using this microchip, continuous separation of multiple samples was performed without any inconvenient and labor-intensive sample preparation steps such as sample mixing, staining, and gel loading which are necessary for conventional gel electrophoresis. It has taken about 4 min to separate single DNA sample and taken 37 min for three serially injected samples which implies that this microchip can be a platform device for fast as well as highly accurate DNA analysis. Graphical abstract: [Figure not available: see fulltext.].
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85111822713&origin=inward; http://dx.doi.org/10.1007/s00216-021-03560-9; http://www.ncbi.nlm.nih.gov/pubmed/34345950; https://link.springer.com/10.1007/s00216-021-03560-9; https://dx.doi.org/10.1007/s00216-021-03560-9; https://link.springer.com/article/10.1007/s00216-021-03560-9
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know