Metabolite alteration analysis of acetaminophen-induced liver injury using a mass microscope
Analytical and Bioanalytical Chemistry, ISSN: 1618-2650, Vol: 414, Issue: 12, Page: 3709-3718
2022
- 3Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
- Captures4
- Readers4
Article Description
Acetaminophen (APAP)-induced liver injury (APAP-ILI), which occurs during APAP overdose, has been extensively studied. The production of N-acetyl-p-benzoquinone imine (NAPQI), the reactive metabolite of APAP, primarily contributes to liver injury. However, the mechanism underlying APAP-ILI has not been fully characterized. For further clarification, it is important to consider drug localization and endogenous substances in the injured liver. Herein, we show the localization of NAPQI metabolites and the injury site–specific changes in endogenous substances in the rat liver following APAP overdose using a mass microscope. Our results of on-tissue derivatization matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) showed that the glutathione metabolite of APAP, a detoxified metabolite of NAPQI, localized in the damaged central vein region in the rat liver following APAP administration. Moreover, in the conventional MALDI-MSI, the intensities of some phospholipids, phosphocreatine, and ceramides decreased or increased in the damaged regions compared with those in non-damaged regions. Phosphocreatine was localized in the damaged cells, whereas its related mitochondrial creatine kinase was localized in the non-damaged cells. These results are expected to contribute to further elucidation of the mechanisms underlying APAP-ILI. Our findings illustrate the localization of NAPQI-related metabolites and endogenous molecules associated with APAP-ILI, which may be related to apoptosis or metabolic adaptation ultimately protecting the cells. As MALDI-MSI can analyze and differentiate regions with tissue damage, it is a valuable tool for analyzing the mechanism underlying drug-induced liver injury to identify novel biomarkers.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85126808882&origin=inward; http://dx.doi.org/10.1007/s00216-022-04017-3; http://www.ncbi.nlm.nih.gov/pubmed/35305118; https://link.springer.com/10.1007/s00216-022-04017-3; https://dx.doi.org/10.1007/s00216-022-04017-3; https://link.springer.com/article/10.1007/s00216-022-04017-3
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know