A new food stabilizer in technological properties of low-fat processed cheese
European Food Research and Technology, ISSN: 1438-2385, Vol: 249, Issue: 3, Page: 597-606
2023
- 4Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Mechanical and textural properties of processed cheeses are affected by low-fat, and hydrocolloids are commonly used as fat mimetics due their ability to make connections with water molecules. The aim of this study was to evaluate the stabilizing effect of Acacia mearnsii gum in low-fat processed cheeses, through physicochemical, composition, rheological and texture analyses. Processed cheeses were made with a 50% fat reduction and added with 0.125, 0.250, 0.375 and 0.5% (w/v) of A. mearnsii gum (AMS), and also were prepared samples full-fat (standard sample) and low-fat without gum (control sample). The chemical composition, physicochemical, textural and viscoelastic properties of processed cheeses were analyzed. Samples with A. mearnsii gum showed a higher amount of carbohydrates and protein content similar to the standard sample. The low-fat content influenced the rheological and textural properties of the processed cheeses, and they had liquid-like behavior and were softer and more spreadable. Processed low-fat cheese with a higher AMS concentration showed viscoelastic behavior similar to the full-fat sample. With standard sample exception, all other processed cheeses when subjected to temperature variation cycles (thermoreversibility test) showed identical behavior, without changes in viscoelastic behavior, being characterized as thermostable systems. AMS addition promoted the molecular interactions (increased cohesiveness) between the formulation constituents. The results showed that A. mearnsii gum has stabilizing potential for the food processing, being able to stabilize products with low-fat content.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know