PlumX Metrics
Embed PlumX Metrics

Children's head movements and postural stability as a function of task

Experimental Brain Research, ISSN: 1432-1106, Vol: 232, Issue: 6, Page: 1953-1970
2014
  • 24
    Citations
  • 0
    Usage
  • 88
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Manual dexterity and postural control develop throughout childhood, leading to changes in the synergistic relationships between head, hand and posture. But the postural developments that support complex manual task performance (i.e. beyond pointing and grasping) have not been examined in depth. We report two experiments in which we recorded head and posture data whilst participants simultaneously performed a visuomotor task. In Experiment 1, we explored the extent to which postural stability is affected by concurrently performing a visual and manual task whilst standing (a visual vs. manual-tracking task) in four age groups: 5-6 years (n = 8), 8-9 years (n = 10), 10-11 years (n = 7) and 19-21 years (n = 9). For visual tracking, the children's but not adult's postural movement increased relative to baseline with a larger effect for faster moving targets. In manual tracking, we found greater postural movement in children compared to adults. These data suggest predictive postural compensation mechanisms develop during childhood to improve stability whilst performing visuomotor tasks. Experiment 2 examined the extent to which posture is influenced by manual activity in three age groups of children [5-6 years (n = 14), 7-8 years (n = 25), and 9-10 years (n = 24)] when they were seated, given that many important tasks (e.g. handwriting) are learned and performed whilst seated. We found that postural stability varied in a principled manner as a function of task demands. Children exhibited increased stability when tracing a complex shape (which required less predictive postural adjustment) and decreased stability in an aiming task (which required movements that were more likely to perturb posture). These experiments shed light on the task-dependant relationships that exist between postural control mechanisms and the development of specific types of manual control. © 2014 Springer-Verlag.

Bibliographic Details

Flatters, Ian; Mushtaq, Faisal; Hill, Liam J B; Rossiter, Anna; Jarrett-Peet, Kate; Culmer, Pete; Holt, Ray; Wilkie, Richard M; Mon-Williams, Mark

Springer Science and Business Media LLC

Neuroscience

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know