Exocytotic process as a novel model for mineralization by osteoblasts in vitro and in vivo determined by electron microscopic analysis
Calcified Tissue International, ISSN: 0171-967X, Vol: 80, Issue: 5, Page: 323-336
2007
- 50Citations
- 48Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations50
- Citation Indexes50
- 50
- CrossRef42
- Captures48
- Readers48
- 48
Article Description
The process of biomineralization has been examined during osteoblastic differentiation of bone marrow stroma cells (BMSCs) from embryonic chick in culture and in periosteum itself by a number of different techniques including transmission and scanning electron microscopy. In cell culture of BMSCs at days 20-25, crystals were accumulated extracellularly in the collagen matrix, resulting in large plate-like crystallites and noncollagen associated on the culture disk surface. In contrast, up to days 10-18, mainly intracellular mineralization was visible by numerous needle-like crystal structures in the cell cytoplasm and in vacuoles. After 20-30 days, the crystal content of these vacuoles is released, most probably by membrane fusion to the outside of the cells. Energy-dispersive X-ray analysis (EDX), electron spectroscopic imaging, and electron energy loss spectroscopy demonstrated that Ca, O, and P are located in the intra- and extracellular needle-like crystals. From EDX spectra a Ca/P ratio of 1.3 was estimated for the intracellular structures and a Ca/P ratio of 1.5, for the extracellular material (for comparison, the Ca/P ratio in tibiae is 1.6). X-ray diffraction and quantitative infrared spectral analyses also demonstrated an increase of crystalline bone apatite along the mineralization process. In addition to the finding in vitro, the presence of intracellular needle-like crystals in vacuoles could be demonstrated in vivo in osteoblastic cells of the periosteum in tibia of day 11. The results are in favor of a novel model for mineralization by osteoblasts, in which amorphous Ca/P material is directly secreted via an exocytotic process from vacuoles of the osteoblast, deposited extracellularly, propagated into the collagen fibril matrix, and matured to hydroxyapatite. © 2007 Springer Science+Business Media, LLC.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=34250206639&origin=inward; http://dx.doi.org/10.1007/s00223-007-9013-5; http://www.ncbi.nlm.nih.gov/pubmed/17406769; https://link.springer.com/10.1007/s00223-007-9013-5; https://dx.doi.org/10.1007/s00223-007-9013-5; https://link.springer.com/article/10.1007/s00223-007-9013-5; http://www.springerlink.com/index/10.1007/s00223-007-9013-5; http://www.springerlink.com/index/pdf/10.1007/s00223-007-9013-5
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know