Short-term exercise in mice increases tibial post-yield mechanical properties while two weeks of latency following exercise increases tissue-level strength
Calcified Tissue International, ISSN: 0171-967X, Vol: 84, Issue: 4, Page: 297-304
2009
- 41Citations
- 35Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations41
- Citation Indexes41
- 41
- CrossRef30
- Captures35
- Readers35
- 35
Article Description
We have previously shown that exercise during growth increases post-yield deformation in C57BL6/129 (B6;129) male tibiae at the expense of reduced pre-yield deformation and structural and tissue strength. Other research in the literature indicates that increased mineral content, cross-sectional geometry and structural strength due to exercise can be maintained or increased after exercise ends for as long as 14 weeks. It was therefore hypothesized that after our exercise protocol ended, effects of exercise on mechanical properties would persist, resulting in increased post-yield behavior and rescued strength versus age-matched control mice. Beginning at 8 weeks of age, exercise consisted of running on a treadmill (30 min/day, 12 m/min, 5° incline) for 21 consecutive days. At the end of running and 2 weeks later, in the cortical bone of the tibial mid-diaphyses of B6;129 male mice, changes due to exercise and latency following exercise were assayed by mechanical tests and analyses of cross-sectional geometry. Exercise increased structural post-yield deformation compared with weight-matched control mice, without changes in bone size or shape, suggesting that exercised-induced changes in pre-existing bone quality were responsible. Over the 2-week latency period, no growth-related changes were noted in control mice, but exercise-induced changes resulted in increased tissue stiffness and strength versus mice sacrificed immediately after exercise ended. Our data indicate that periods of exercise followed by latency can alter strength, stiffness, and ductility of bone independent of changes in size or shape, suggesting that exercise may be a practical way to increase the quality of the bone extracellular matrix. © 2009 Springer Science+Business Media, LLC.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=63949086022&origin=inward; http://dx.doi.org/10.1007/s00223-009-9228-8; http://www.ncbi.nlm.nih.gov/pubmed/19283427; http://link.springer.com/10.1007/s00223-009-9228-8; https://dx.doi.org/10.1007/s00223-009-9228-8; https://link.springer.com/article/10.1007/s00223-009-9228-8; http://www.springerlink.com/index/10.1007/s00223-009-9228-8; http://www.springerlink.com/index/pdf/10.1007/s00223-009-9228-8
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know